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Dispersion relation for energy bands and energy gaps derived 
by the use of a phase-integral method, with an 
application to the Mathieu equation 

Nanny Froman 
Institute of Theoretical Physics, University of Uppsala, Uppsala, Sweden 

Received 16 January 1979 

Abstract. The quantal problem of a particle moving in a one-dimensional periodic potential 
with one barrier per period is treated rigorously by means of a phase-integral method. A 
general dispersion formula, relating real energies to real or complex wavenumbers, valid for 
any conveniently chosen order of the phase-integral approximations used, is derived. The 
formula allows for the use of modified as well as unmodified phase-integral approximations, 
and different possibilities are discussed. For instance, a modification introduced by Floyd in 
the usual first-order JWKB approximation and applicable to the interior of high-energy 
bands can be utilised in our scheme for the generation of higher-order phase-integral 
approximations. This approach opens the possibility of using our phase-integral method in 
situations where the parameters of the problem are such that with unmodified approxima- 
tions it would not work at all. The accuracy obtainable is illustrated by calculations on the 
Mathieu potential and comparison with available accurate numerical results. 

1. Introduction 

The results of a thorough analysis of the barrier transmission problem made by Froman 
and Froman (1970) will be used for treating the problem of a particle moving in a 
one-dimensional periodic potential (with one barrier per period) with the aid of the 
phase-integral method developed by the same authors (Froman and Froman 1965, 
1974a, b, pp 126-31, Froman 1966, 1970). Imposing on the wavefunction the 
conditions due to the periodicity of the potential, we obtain an exact dispersion relation 
determining the allowed energies (energy bands) corresponding to real values of the 
wavenumber k, as well as the forbidden energies (E real) corresponding to complex 
values of k. Neglecting in this exact relation certain correction quantities for which 
upper bounds are given (Froman and Froman 1970), we obtain an approximate 
dispersion relation which is in general very accurate when higher-order phase-integral 
approximations are used. For the numerical illustration of the accuracy of our results 
we consider the Mathieu equation, which is identical with the Schrodinger equation for 
the quantum pendulum, though for the latter only the solutions periodic with the same 
period as the potential are relevant. Besides the advantage, for our purposes, that 
accurate numerical information is available for comparison, the Mathieu equation is a 
convenient example because of its importance in many different branches of physics 
(see Meixner and Schafke 1954, ch 4). For instance in quantum mechanics it is used for 
the analysis of band structures (see a thorough analysis by Slater (1952)), and recently it 
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has become of interest in field theory in connection with the extensively studied 
sine-Gordon model (see e.g. Neuberger 1978). 

The application of the first-order JWKB approximation to the Mathieu equation was 
treated by Jeffreys (1925), who used the periodicity of the Mathieu functions to obtain 
the characteristic values well above the top of the barrier, and connection formulae to 
obtain those well below. Other early papers in which asymptotic methods were used are 
those by Goldstein (1928), Strutt (1929) and Wannier (1953). In this context we draw 
attention to the fact that the application of connection formulae to the case when the 
energy is well below the top of the barrier requires great caution with regard to their 
one-directedness. Otherwise insignificant terms appear in the resulting formulae. For 
instance, in a collection of solved problems (ter Haar 1964) in which that case is treated, 
one notices that only the leading term in the formula (3) on p 97, which determines the 
allowed energy bands, is correct, the next term being in error by a factor of two. One 
finds the same deficiency appearing also in recent standard JWKB calculations in the 
literature, for instance in Neuberger's paper (1978, equation (37)). Landauer (195 1) 
considered energies above the top of the barrier and used a convergent expansion, the 
first term of which is the first-order JWKB approximation, while the next term accounts 
for reflections. Landauer's results were exploited by Buxtoii and Berry (1976) in an 
extensive analysis of Bloch wave degeneracies in high-energy electron diffraction. 
Dykhne (1961), considering the complex transition points, obtained the positions and 
widths of the energy gaps far above the top of the barrier. Balazs (1969) and Richardson 
(1971) obtained formulae which, except for missing a certain quantity (a in our 
notation; see $ 4  below) of importance in the neighbourhood of the top of the barrier, 
agree with the corresponding formulae in our treatment when the latter are specialised 
to the first-order approximation. 

2. Formulation of the problem 

Let the time-independent Schrodinger equation be 

d2$/dz2 + Q2(z)i,b = 0, 

0 2 ( z )  = (2m/h2W- V ( z ) ) ,  
where 

E being the energy of the particle and V ( z )  a periodic, analytic potential with period a, 
which thus satisfies the relation 

V ( z  + a )  = V ( z ) .  (3) 

The periodicity of the potential implies that Q2(z) also is periodic, and hence (1) is the 
Hill equation. For a Floquet solution of (1) we have 

+ ( z + a ) = A $ ( z ) ,  (4a) 

$'(z + a )  = A$'(z), (4b) 

where the Floquet factor A is a constant (depending on E). It was shown by Liapunov 
(1902) that the quantity p defined by 

P = (rL(z + a ) + $ ( z  --a))/2$(z) ( 5 )  

is a function only of the energy and is independent of the choice of the solution $ ( z ) .  We 
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shall therefore write p ( E )  instead of p for the quantity (5). Letting $ ( z )  be a Floquet 
solution, we immediately obtain from (4a) and ( 5 )  

Kramers (1935), in a well-known paper, derived this equation for A but with p ( E )  given 
by an expression alternative to (5). Expanding a Floquet solution in terms of two 
linearly independent basic solutions of ( l ) ,  he obtained, in terms of those solutions and 
their derivatives at z and z + a, an expression for the quantity corresponding to 2~ (E) 
in our notation, which he showed was independent of z and of the choice of the basic 
solutions. The properties of p (E) for real values of E were also described by Kramers 
(1935). Studies of the analytic properties of p (E) and A (E) in the complex energy plane 
were made by Kohn (1959) and by Kaus and Watson (1960). 

We can write A in the form 

, (8) 

cos(ka) = p (E). (9) 

$ ( z )  = eikzu(z), (10) 

u(z  + a )  = u(z) .  (11) 
For real values of the energy E the function F (E) is real (Kramers 1935, p 484) and 

hence, as follows from (9), the wavenumber k is either real or is complex with the real 
part an integral multiple of r / a .  For real values of k the solutions (10) are the 
well-known Bloch waves, and the energies, determined by (9), are the so-called allowed 
energies forming the energy bands. For complex values of k the solutions (10) have an 
exponential behaviour, and the corresponding energies satisfying (9) are the so-called 
forbidden energies, which form the energy gaps separating the energy bands. See the 
paper by Kramers (1935) for further details. 

The problem of determining the structure of the energy bands and energy gaps is 
thus equivalent to the problem of obtaining a useful expression for p (E). 

A = eika 

where, by virtue of (6), k is determined as a function of E by the equation 

In view of (4a) and (8), a Floquet solution of (1) can be expressed as 

where 

3. Exact expression for p ( E )  in terms of phase-integral quantities and an F matrix 
element 

The explicit expressions for the phase-integral functions used in the present treatment 
are of the general form (Froman 1966, 1970) 

fib) = 4-1’2(z)  exp( i 1‘ dz) dz), (12a) 
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The function 4 ( z )  is, for the (2N + 1)th-order phase-integral approximation, given by 
(Froman and Froman 1974a, b, pp 126-31) 

and Vmod(z) is a so-far unspecified modified potential with the same period as V(z). We 
shall consider only real values of the energy E, and we assume that V(z) and Vmod(Z) 
are real on the real axis. If Vmod(Z) = V(z) we speak of unmodified phase-integral 
approximations, and if Vmod(Z) # V(z) of modified approximations. We shall discuss 
the choice of Vmod(Z) in 9 5. The first few functions Yz, are (Froman and Froman 1970, 
equations (6a-c)) 

Yo= 1, t15a) 

with 

and 

E, = dnEo/dtn, n = 1 , 2 , .  . . , (17) 

The functions Yz, can all be expressed in terms of eo, el, E ~ , .  . . . Explicit expressions 
for the functions Y2, up to YzO can be found in a paper by Campbell (1972). 

The connection problems for the arbitrary-order phase-integral approximations 
given by equations (12a, b)-(18) can be mastered by the same method as developed by 
Froman and Froman (1965) for the first-order JWKB approximation. Thus, according to 
the phase-integral method we are using, an exact solution of the differential equation 
(1) is expressed in terms of the functionsfl(z),f2(z) and a matrix F ( z ,  zo), the elements 
of which are given by convergent series. The final approximate formulae are obtained 
by omitting certain correction quantities involving elements of the matrix F for which 
upper bounds are obtainable. 

We assume, for each barrier, the complex z plane to be cut in the same way as in the 
paper by Froman and Froman (1970) on barrier transmission. Denoting real values of z 
on the first Riemann sheet and on the upper edge of the real axis by x ,  we let the points 
x1 and x2 in that paper be xl and x 2  = x1 + a ,  lying to the left and to the right respectively 
of one of the barriers in our present problem (see our figure 1). 

In order to obtain an expression for p (E), we may utilise either (4a, b )  or (5) and 
apply the phase-integral method just described in a straightforward way. In either case 
we shall need some phase-integral relations which we shall now derive. 
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Figure 1. Schematic drawing of Vmo&) - E for a periodic potential with period a, and of 
the contours of integration rK and Tr  occurring in the definitions (23) and (24a) of K and 
L: ( a )  and (6) refer to the situation when the energy E lies below and above the barrier 
maxima respectively. The cuts in the complex t plane are indicated by heavy lines. Broken 
curves indicate parts of the contour of integration lying on the second Riemann sheet. The 
choice of phase for q ” * ( x )  on the upper edge of the real axis and on the first Riemann sheet 
is indicated. The contour integral of q(z)  along rL in (6) can be replaced by the integral 
(246), whereby the cuts crossing the real axis should be removed. 

We consider a solution of (1) at the point x1 expressed, together with its derivative, 
exactly in terms of the phase-integral functionsfl(xl) andf2(xl) as (Froman and Froman 
1965, equations (3.25a, 6)) 

CL (x 1) = a 1(x 1) f 1 (x 1) + a2(x 1) fib 1) = f ( x  lh (x 11, (19a) 

cCl’(X1) = al(xl)f;(xl)+az(xl)f;(xl) =f(x1)a(xd, (19b) 
where f and a denote the row vector and the column vector with elements f l ,  f z  and a t ,  
a2 respectively. We note that, according to the phase-integral method we are using, the 
derivative of JI is obtained by differentiating formally as if al  and a2 were constants. For 
$(xl*u) and $ ’ ( x l * u )  we obtain the expressions (Froman and Froman 1965, 
equation (3.26)) 

CLbl * a )  =f(x1 * a)a(x1 * a )  =f(x1 * U ) F ( X l  * a ,  Xl)U(Xl), 

$ ’ ( X l * U )  = f ( x l * u ) a ( x l * a )  = f ) (X l*a)F(x l*u ,  XlU(Xl), (206) 
where, and in the following, the upper signs yield one set of relations and the lower signs 
another, and where the matrix F(xl  f a ,  xl) is defined according to Froman and Froman 
(1965). 

We shall next express the functions fi and f 2  at the points x1 a in terms of f l  and f 2  

at the point XI, and in that context also give explicit expressions for certain quantities 
which will appear in our final formulae. We adhere to the same conventions as Froman 
and Froman (1970), and hence we choose the lower limit in the integral occurring in the 
exponents of the expressions (124 b) for the functionsfl(z) and f 2 ( z )  to be tl (see our 
figure 1) in the first-order approximation and the corresponding contour integral in the 
higher-order approximations (Froman 1966), and we choose q l ” ( z )  to be real and 
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positive in the classically allowed region where x1 is located. Because of the periodicity 
of the potential, we then have 

f l ( X l * a ) =  *CfZ(Xl) ,  f2(x1*a) = W/C)fl(Xl) ,  

f; (x 1 f a ) = f cf; (x l) ,  fi  (x 1 f U 1 = (1 / cy; (x 11, 

C = exp[K -i(L - 7~/2)], 

(21b) 

where, for conciseness, we use the notation 

(22) 

with K and L defined as 

L = Re i Ir, q ( z )  dz, 

the contours of integration rK and rL for both sub-barrier and super-barrier energies 
being shown in figure 1.  For super-barrier energies the quantity L is most conveniently 
written as an integral along the real axis over an arbitrary period of the potential, 
whereby the cuts crossing the real axis should be disregarded and 4 ( x )  chosen to be 
positive along the whole real axis. In this way formula (24a) can be written 

L = Ixx+a 4 ( x ’ )  dx’, super-barrier case. 

Let us now first obtain @ ( E )  by using (4u, b) ,  putting z = x i .  Expressing the Floquet 
solution (L and its derivative (L’ at the points x1 and xi  + a by meansof (19a, b )  and (20~2, 
b) ,  and expressing in the resulting formulaef(xl + a )  andf’(xl + a )  in terms of !(xi) and 
f’(xl) respectively by means of (21a,b), we obtain, after some rearrangements, the 
equation 

f i  (x 1) {[-( 1 / CFzi (x i + a, xi) - A Ia i (xi) - (1  / C)Fzz(Xi+ a, xi)az(x 1) )  

+f2(xi)[CFii(xi + a, xi)ai(xi)+ (cF12(~1 +a,  ~i)-A)az(xi)I  (25) 
= 0 ,  

and a similar equation with f l (x l )  and f2(xl) replaced by f; (xi) and f;(xl) respectively. 
From these two equations we obtain, as a consequence of the fact that the Wronskian of 
f l  and fz is different from zero, the system of equations 

(26a 1 
(26b) 

Since al(xl)  and a2(x1) are not both equal to zero, the determinant of the system of 
equations (26a, b )  must be equal to zero. This requirement yields, with the use also of 
the fact that det F(xl  +a, xl) = 1 (Froman and Froman 1965, equation (3.19)), 

(27) 

[-(1/C)F2i(~i +a,  ~i ) -h Ia i (x i ) - ( l /C)Fzz (Xi  +a,  xi)az(xi) = O ,  

CFii(xi +a,  xi)ai(xi)+(CFiz(xi +a,  xi)-A)a2(xi)=O. 

A - [CF12(~1+ U, XI) - (1 /  C ) F ~ I ( X ~  + U, xi)]A + 1 = 0. 

Comparing (27) with (7), and using the inversion relation for the F matrix, i.e. equation 
(21) in the paper by Froman and Froman (1970), we realise that 

@(E)=i[( l /C)F21(xl ,  xl+a)-cFlZ(Xl,  X l + U ) l .  (28) 
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Noting that, since we are considering real energies, and since V ( z )  and Vmod(z) are 
assumed to be real on the real axis, we have the symmetry relation (Froman and Froman 
1970, equation (22b)) 

~ ~ ~ ( x ~ ,  x1 + a )  = - F T ~  (xl, x1 + a )  eZK, (29) 

and recalling the expression (22) for C, we can write (28) in the form 

p(E) = IFl2[ eK cos(L - 2u), (30) 

where 

(T = $(arg F12 - ~ / 2 )  (31) 

and F12 means F12(x1, x1 + a). 
Solving equation (7) with respect to A, when p ( E )  is given by (30), we obtain 

(32) 

According to (9) and (30) we obtain the following exact formula determining the 

2 2K A ( E )  = IF12(eK COS(L - 2a)  i[l - 1 ~ 1 2 1  e c o s 2 ( ~  - ~ ( T ) I ” ~ .  

connection between the wavenumber k (real or complex) and the energy E (real): 

cos(ka) = I ~ ~ ~ l e ~  COS(L - 2u). (33) 

The reason why (33) is valid only for real energies is that the symmetry relation (29) 
used in the derivation of (30) requires for its validity that Q 2 ( z )  and QiOd(z)  are real on 
the real z axis. Since the quantities on the right-hand side of (33) are functions of the 
energy E, we see at once that (33) is consistent with the well-known relations 

E ( - k )  = E @ ) ,  (34a) 

E(k + 2 ~ / a )  = E ( k ) .  (34b) 

k = k,+iki, (35) 

it follows from what is said at the end of 0 2 that ki is equal to zero for allowed energies, 
while k, is equal to an integral multiple (including zero) of w / a  for forbidden energies. 

As mentioned above, we may alternatively utilise ( 5 )  in order to derive the 
expression for p ( E ) .  We thereby put z =xl in ( 5 )  and express $(xl), $(xl+a)  and 
$(xl - a )  in terms of phase-integral quantities by means of (19a) and (20a). We then 
expressfl(xl f a )  andf2(x1 f a )  in terms of fl(xl) andf2(xl) by means of (21a) with (22). 
Furthermore, we express the elements of F(xl  - U ,  xl) in terms of those of F(xl, x1 + a )  
by examining the structure of the formulae defining the elements of the F matrix 
(Froman and Froman 1965, equations (3.22u-d)), obtaining, because of the periodicity 
of the potential, 

If we put 

F11(x1-a, Xl)=F22(Xl,X1+a), 

F22(x1 - a ,  x1) = Fll(X1, x1+ a ) ,  

F21(x1 - U ,  x1) = -C2F12(x1, x1 + a ) ,  

&(Xl - a ,  x1) = --(1/C2)F21(Xl, x1 + a ) .  

Finally, we arrive in a straightforward way at the expression (28) for p ( E ) .  
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4. Approximate dispersion formula relating k (real or complex) to E (real) 

For the quantity 1F121 we have the estimate 

where p is the 'quantity of goodness' for the phase-integral approximations used 
(Froman and Froman 1970, equations (436) and (44)), not to be confused with the 
quantity p ( E )  considered in the previous section. The quantity p in (37) is in general 
smaller the higher the order of the phase-integral approximation used (up to a certain 
optimal order). 

The quantity U, which is defined by (31), is of importance for energies near the top of 
the barrier. For the phase-integral approximation of order 2N + 1, we have the 
approximate formula (Froman et a1 1972) 

N 
( 2 n + l )  u = C u  , 

n =O 

with 

where K is the quantity defined by (23), pertaining to the actual order 2N + 1 of the 
approximation being used, while K") and represent the first- and third-order 
contributions to K respectively. The formula (38) with (39a-c), the derivation of which 
will be presented in a forthcoming publication by Froman and Froman, approximates U 
very satisfactorily for energies in the neighbourhood of the top of the barrier where U is 
of decisive importance. The formula is less good for energies far away from the top, but 
this is no serious deficiency, since cr is then very small and may conveniently be omitted. 
In fact, if the energy is far below or far above the top of the barrier, somewhat improved 
results may be obtained by omitting U instead of using the approximate expressions for 
U given above (cf the comments on table 2 in 0 6). 

With the error terms in the estimate (37) for IF121 omitted, we obtain from (33) the 
following approximate dispersion formula, determining the relation between k (real or 
complex) and E (real): 

cos(ka) = (1 + cos@ - 2u), (40) 

where K and L are given by (23) and (24a, 6) respectively, and U is given by (38) and 
(39a-c). It may be worth emphasising that the formula (40) is valid for allowed and 
forbidden energies below and above the top of the barrier, as well as in the important 
intermediate-energy range near the top of the barrier, where neither the tight-binding 
model nor the nearly-free-electron model is adequate. We recall that cr is of decisive 
importance for energies in the neighbourhood of the top of the barrier, in which region 
the approximate expression (38) with (39a-c) is very accurate. 
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In particular, for the band edges we have, according to (40), 

(41) 2K -1/2 cos(L-2u)=*(l+e ) . 
Thus the energies at the band edges satisfy 

L -2u  = (v  - l ) ~  + tan-' eK = (v - 2 ) ~  -tan-' e-K, lower edge of vth band, 

and 

L - 2u = VT - tan 

where 0 <tan-' eaK < ~ / 2 ,  and v is a positive integer. Thus the vth band comprises 
energies between those satisfying 

1 (41a) 

(41b) -1 K - e - (v - 4 ) ~  +tan-' e-K, upper edge of vth band, 

L-2u  = ( v  - f ) . r r*  tan-' e-K, v = 1,2,  . . . , (42a 1 
while the vth gap, which corresponds to energies between the upper edge of the vth 
band and the lower edge of the (v+l) th  band, comprises energies between those 
satisfying 

(42b) L - 2u = VT *tan-' eK, v = 1 , 2 , .  . . . 
When the energy is far below the top of the barrier, we have e2K >> 1, and U is very 

small (and may possibly be omitted). We realise from (42a) that the energy bands are 
very narrow, the centre of the vth band being conveniently defined by the condition 

(43) 

We realise that this relation, as is to be expected, determines the quasi-stationary 
energy levels in the wells of the periodic potential. 

When the energy is far above the top of the barrier, we have eZK << 1, and also in this 
case U is very small (and may possibly be omitted). The allowed energy bands become 
broad and are separated by narrow gaps of forbidden energies, the centres of which, as 
is seen from (42b), may be defined by the condition 

1 L - 2u = ( v - 2) T, v =  1 , 2 , .  . . . 

L - 2 u =  VT, v positive integers. (44) 

If the first-order expression for L with Vm&) = V(z), i.e. with Qmod(z) = Q ( z ) ,  is 
used, and if U is neglected, formula (44) becomes simply 

2m 1/2 
(-&E - V(x) ) )  dx = VT. 

X 

(45) 

This formula agrees with the formula for the centres of the energy gaps lying far above 
the barrier top given by Dykhne (1961); see also a paper by Richardson (1971). 

In connection with formulae (43)-(45), we would like to emphasise that the accurate 
determination of the position of a narrow band or a narrow gap, to within a few 
half-widths or so, is a very delicate problem, which in general requires the use of 
phase-integral approximations of a rather high order; otherwise the result may cor- 
respond to a displacement by a great number (several powers of 10) of half-widths (see 
Froman and Froman 1970, pp 620-1. Drukarev er ai 1979, p 184). 

When a band or a gap, as the case may be, is sufficiently narrow, we can expand 
L-2u  around the energy corresponding to the centre of the band or of the gap, 
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respectively, obtaining from (42a, b )  

(46) FK [a(L - 2o)/aE]AE = 2 tan-' erK - 2 e , 

where AE is the width of the band (upper sign) or of the gap (lower sign), respectively. 
The energy derivative aL/aE can, for phase-integral approximations of arbitrary order, 
be obtained in a simple form (Froman 1974, equation (6)). However, in view of the 
approximations made to obtain (46), the first-order expression may suffice for deter- 
mining the width, and in that approximation formula (46) yields 

AE 2h eTK/(T - 2ha~/aE),  (47) 

where, for a sub-barrier band, we have, according to (24a) with q ( z )  = Qmod(z), 

while, for a super-barrier gap, we have, according to (24b) with q(x) = Qmod(x), 

The quantity acr/aE is obtained approximately by differentiating (39a) with K put 
equal to K'". The resulting expression is given explicitly in the paper by Drukarev er a1 
(1979). According to (47a), the quantity T is, in the sub-barrier case, the classical time 
a particle would need to travel across the well from to to t l .  (It should be noticed that in 
decay problems one usually introduces the classical time for a whole oscillation in the 
well, i.e. twice the quantity (47a) (cf Drukarev er a1 1979).) In the super-barrier case, 
the quantity T is, according to (47b), the time a particle would need to travel one whole 
period in the potential Vmod(Z). For the first-order approximation now under consi- 
deration, the quantity U is equal to U") ,  which is approximately given by (39a) when the 
energy lies in the neighbourhood of the top of the barrier. In view of the expansion 
made to obtain (47), we cannot expect this formula to be very accurate unless the band 
or the gap is narrow. However, we may still use the formula for energies close to the top 
of the barrier, and we then realise that, when the energy approaches the top of the 
barrier, T and au/aE tend to infinity, while the difference T - 2haa/aE tends to a finite 
value. This demonstrates the decisive importance of retaining the quantity U for,  
energies near the top of the barrier; see also the discussion in the paper by Drukarev et 
a1 (1979). If we delete the term 2 h a ~ l a E  in the denominator of (47) and put Vmod = V, 
formula (47) with (476) becomes the same as a formula given by Dykhne (1961) for the 
case of a narrow gap. 

For super-barrier energies, reflections are in our treatment accounted for by taking 
the complex transition points properly into account, from which the appearance of the 
quantity in formula (40) derives. For the energy gaps, reflections are important 
even for energies far above the top of the barrier. Hence the quantity eZK in (40), 
although small, remains important and gives rise to the decisive factor eK in the formula 
(47) for the width of a gap. However, for energies in the interior of an energy band far 
above the top of the barrier, reflections are negligible, and each one of the phase- 
integral functions fl(x) and f2(x) represents an approximate wavefunction along the 
whole real axis. Thus, for the special situation of energies in the interior of a band far 
above the top of the barrier, we can represent $(x) by either (12a) or (12b), choosing 
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q(x) to be positive and imagining for the moment that the cuts crossing the real axis have 
been removed. Using (4a) and recalling (24b), we then obtain 

A = cL(x + a)/cL(x) 
x +a 

= q-”2(x + a )  exp( rti [ q(x’) dw’)/q-1’2(x) exp( rti jx q(x’) dx’) 

= exp( rti [xx+a q(x’) dx’) 

(48) = 

where the alternative signs in the exponent correspond to the two possible directions of 
propagation of the Bloch waves. From (8) and (48) we obtain the dispersion formula 

ka = rtL, (49) 

which it may possibly be advantageous to use instead of (40) in the interior of 
high-energy bands, i.e. when L is not close to an integer multiple of T (cf (426)). 
Obviously, the use of (49) instead of (40) is equivalent to neglecting both U and eZK in 
(40). Recalling that the quantities U and eZK decrease with increasing energy, we may 
thus consider (49) as a limiting case of (40), appropriate for the interior of high-energy 
bands and possibly sometimes more accurate than (40) in that situation. Both formulae 
are, however, very accurate for the interior of a high-energy band, especially when 
higher-order approximations are used, and in practice it may not be important to know 
whether the use of (49) would yield greater accuracy than the use of the general formula 
(40). 

5. On the choice of Vm&) 

The arbitrary-order phase-integral approximations, decribed at the beginning of 0 3, 
were originally derived in unmodified form (Froman 1966, 1970), i.e. with Qmod(z) = 
Q ( z ) .  Later the problem of consistent modification in any order was solved (Froman 
and Froman 1974a,b pp 126-31). As displayed in our formulae (12)-(18), the 
unmodified case presents itself as a special case of the general formulae. By using a 
convenient modification with Qmod(z) # Q ( z ) ,  one may, for instance, achieve the result 
that the phase-integral approximations become good at certain singular points where 
the unmodified approximations would fail, or one may achieve improvements in 
accuracy in other respects, e.g. in the respect that, with increasing order, the modified 
phase-integral approximations tend faster than the unmodified ones towards the 
optimal result. Because of the flexibility yielded by the procedure of consistent 
modification, it may even be possible to apply the phase-integral method in situations 
where the parameters of the problems are such that with unmodified approximations it 
would not be useful at all (see table 4). 

In the present problem Q 2 ( z )  has no singular points on the real axis, and hence, from 
that point of view, the unmodified phase-integral approximations are useful, apart from 
in the neighbourhood of transition points. Thus it is very natural to choose Qmod(z) = 
Q ( z ) ,  i.e. Vmod(Z) = V(z). If the condition for the usefulness of the first-order 
phase-integral approximation, i.e. the usual JWKB approximation, is fulfilled (Froman 
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and Froman 1965, equations (2.3)-(2.5)), the higher-order phase-integral approxima- 
tions can be expected to yield very accurate results. If, however, the parameters of the 
problem are unfavourable for the usefulness of the unmodified phase-integral approx- 
imations, we may, above the top of the barrier, obtain useful approximations by 
choosing as the modified potential the function W introduced by Floyd (1976) in a 
first-order JWKB treatment. We remark, however, that Floyd’s assertion in connection 
with the motivation for his treatment-that phase-integral approximations have the 
deficiency of ignoring the effects of reflections and hence the existence of band gaps in 
energy-when applied to an electron with sufficient energy to preclude the existence of 
classical turning points, is irrelevant, as our present paper demonstrates explicitly. 
Within our framework the derivation of the modified potential obtained by Floyd 
proceeds as follows. If, in the differential equation (l), one puts 

(50) ,/,=Q-l/2 mod exP( *i I * Qmod dz), 

it is found that Q:od satisfies the differential equation 

which is the same as equation (3.6) with (3.5~) in the work by Froman and Froman 
(1965), though in the latter work the notation 4 2  replaces Q:& in (51). Inserting 
expressions (2) and (14) for Q2 and aiod respectively into (51), and assuming that 
I VmOd(z)/El<< 1, we may linearise the resulting equation, obtaining 

(52) 

where the double prime denotes differentiation with respect to z. Formula (52) is 
identical with Floyd’s (1976) equation (8) satisfied by W. From (52) it follows that 
Vmod -* V as E -* Co. For sufficiently high energies we can therefore replace V’Lod by V“ 
in (52), obtaining 

(h2/8mE) VLod f Vmod = v, 

Vmod(Z) = V(Z) - (h2 /8mE)  V ( Z ) .  (53) 

This expression for V,, can also be obtained in the following alternative way from the 
unmodified third-order expression for 4 ( 2 ) .  Assuming that IV(z)/El<< 1, we may 
expand the square of our unmodified third-order expression for 4(z) ,  given by (13), (14) 
with Vmod = V, (15a, b) and (16), retaining Only linear terms in VIE. In this way we 
obtain 

q 2  = [Q(l +fro)]’ = Q2(1 +eO) =$(E - V +- 8mE (54) 

Choosing now QkOd(z) to be equal to the last member of (54) and recalling (14), we 
arrive at the expression (53) for Vmod(Z). 

6. Numerical results for the Mathieu potential 

The results obtained by the analysis of the barrier transmission problem (Froman and 
Froman 1970), on which the treatment in the present paper is based, have proved to be 
extremely accurate for energies both below and above, as well as close to the top of, the 
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barrier, especially when higher-order phase-integral approximations are used (Karls- 
son 1975, Lundborg 1977), and our main result, formula (40), as well as the formulae 
derived therefrom, is therefore expected to be very accurate. For the interior of a 
high-energy band, the alternative dispersion relation (49) is also expected to yield very 
accurate results. Since it is worthwhile to illustrate the accuracy quantitatively, 
numerical results obtained by the application to the Mathieu potential will be compared 
with available tabulated results (National Bureau of Standards (NBS) 1967, McLachlan 
1964, Floyd 1976). 

We write the Mathieu equation in the form (1) with 

Q'(.z) = A - 2B COS(~Z) ,  ( 5 5 )  

which, according to (2), means that 

(2m/h2)E = A ,  

(2m/h2) V(2) = 2B cos(22), 

with the period equal to T. The notations used in McLachlan's book correspond to 
Q 2 ( z )  = a -2q cos(22), and those used in the NBS tables correspond to Q2(z) = 
a -fs cos(22). The lower and the upper edge of the vth band, Y = 1 , 2 , .  . . , will be 
denoted by a,-1 and 6, respectively, in accordance with the notation in table 25 on p 
371 in McLachlan's book. The values given in the NBS tables denoted by be,-1 and bo, 
correspond to a,-1 + 2B and b, + 2B respectively. With the aid of the NBS tables, the 
values of 

As mentioned in 0 5 ,  under semi-classical conditions it is most natural to use 
unmodified phase-integral approximations, i.e. to choose 

(57) 

and 6, are obtained with one more figure than given by McLachlan. 

(2m/h2) V,,(z) = (2m/h2) V(2) = 2B cos(22). 

As concerns the modifications discussed in P 5 ,  we obtain, by choosing Vmod(2) as a 
solution of (52), 

(58) (2m/h2) V,,(Z) = (1 - 1/A)-'2B COS(~Z) ,  

while from (53) and (56a, b) we obtain 

(2m/h2)Vmod(2) = (1 4- 1/A)2B COS(22). (59) 

If Il/Al<< 1, the modifications (58) and (59) differ only with respect to terms involving 
higher powers of 1/A, and hence they are then expected to yield essentially the same 
result. However, if semi-classical conditions are violated, the modification (58) may 
still be useful, while the modification (59) cannot be used. 

Table 1 shows, as an illustrative example of the approach towards a very accurate 
result of the successive orders of approximation, the values for the upper edge of the 8th 
band, pertaining to the Mathieu potential with B = 1, calculated from (41b) with 
Vm&) = V(z) and with v neglected. The figures given in the 13th-order approxima- 
tion may be expected to be correct, apart from a couple of units in the last figure. 

The results for band edges displayed in table 2 demonstrate the importance of 
including v for energies in the neighbourhood of the top of the barrier, i.e. for energies 
in the neighbourhood of A = 8, since B was chosen to be equal to 4. With (T included, 
accurate values of the band edges are obtained from (41a, b) for all energies. We also 
note that, for the bands close to the top of the barrier, i.e. the 3rd band and the lower 
part of the 4th band, the inclusion of v is essential for obtaining accurate values, while 
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Order of 
approximation 

Band edge bs obtained 
from (41b) with U neglected 

1 64.0078 
3 64.007 935 
5 64.007 937 16 
7 64407 937 1887 
9 64.007 937 189 24 

11 
13 

64.007 937 189 251 5 
64,007 937 189 251 7 

Table 1. B = 1, Vmod(z) = V ( z ) .  Upper edge bs of the 8th energy band calculated from 
(416) to illustrate the approach of the phase-integral results towards a very high degree of 
accuracy. The value obtained from the NBS tables, bs = bus - 2B = bus - 2, is also given. 

rom 
(41a, b )  in the 5th-order approximation with U included as well as with (r neglected. The 
values obtained from the NBS tables, a,-l = be,-l -2E = be,-l -8 and b, =bo, -2B = 
bo, -8, are also given. 

Value obtained from the NBS tables: 64.007 937 19 

Table 2. E = 4, Vmod(z) = V ( z ) .  Band edges a,-] and ~ of the vth band calculate1 

Results obtained from (41~1, b )  
in the 5th-order approximation 

Band Values obtained 
edge from the NBS tables U included U neglected 

a,, -4.280 518 82 -4.2798 -4.2802 
61 -4.259 182 90 -4.2587 -4.259 06 
a l  2.318 008 17 2,318 07 2,321 
bz 2.746 88103 2.746 895 2.750 
a2 6.829 074 84 6.829 10 6.4 

Top of barrier = 8 
b3 9.261 446 10 9.261 4457 9.8 
a3 10.671 027 10 10.671 034 10.8 
b4 16.452 035 29 16.452 034 16.450 
a4 16.649 818 91 16.649 8179 16.648 
b5 25.330 544 87 25.330 5441 25.330 45 
a5 25.343 757 63 25.343 7569 25.343 66 
b3 36.229 411 42 36.229 411 1 36.229 401 1 
a6 36.229 952 51 36.229 9522 36.229 9422 
b7 49.167 067 63 49.167 0675 49.167 065 
a7 40.167 082 82 49.167 0827 49.167 080 68 
bs 64.127 159 14 64.127 159 10 64.127 158 52 

by neglecting U the tabulated results are somewhat improved only for the lowest-energy 
band. Neglecting U would possibly yield somewhat improved results for still higher 
energies than those tabulated in table 2. 

Table 3 showsresults obtained by usingformulae (41a, b), still with Vmod(z) = V ( z ) ,  
for the calculation of band edges and b,, pertaining to the Mathieu potential with 
B = 1. For the higher bands the band edges obtained from (41a, 6 )  are given in table 3 
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Table 3. B = 1, Vmod(z) = V ( z ) .  Band edges a,-l and b, of the vth band calculated from 
(41a, b). The values obtained from the NBS tables, a,-l = be,-l - 2 8  = be,-l -2 and 
6, = bo, - 2B = bo, - 2, are also given. 

Band Values obtained from 
edge the NBS tables Values calculated from (41a, b) 

-0.455 138 60 

-0.11024882 
1.859 108 07 

3.917 024 77 
4.371 300 98 
9.047 739 26 
9,078 368 85 

16.032 970 08 
16.033 832 34 
25.020 840 82 
25,020 854 34 
36.014 289 91 
36.014 290 05 
49,010 418 25 
49,010 418 25 
64.007 937 19 

-0'450 ] band width = 0.34 
band gap = 1.75 

1.859 4 
5th-order 
approximation, 
U included 

13th-order 
approximation, 
U neglected 

Top of barrier = 2 
3.916 99 
4.371 297 
9.047 734 
9,078 364 

16.032 970 03 
16.033 832 29 
25.020 840 823 
25.020 854 345 
36.014 289 897 87 
36.014 290 058 79 
49.010 418 249 894 
49.010 418 249 894 
64,007 937 189 251 7 

with more figures than the NBS values quoted. The reason is that, by studying the 
results obtained from (41 a ,  b) in successive orders of the phase-integral approximations 
(cf table l), one may judge the accuracy, and on this basis all the figures in the 
13th-order approximation given in table 3 may be expected to be correct, apart from a 
few units in the last figure. 

Table 4 illustrates a situation where semi-classical conditions do not prevail, and the 
parameters are thus quite unfavourable for the use of unmodified phase-integral 
approximations. In fact, the ratio of the local de Broglie wavelength 27r/Q and the 
period 7r of the potential varies between limits of approximately 5 and 12. Neither is 
the modification (59) useful, since at the extrema of the potential we have I VIE] = 0.7, 
and thus the condition 1 V/EI << 1 is not fulfilled for all values z .  However, for the 
modification (58)  we have I V,,,,,/EI S 2B/IA -- 11 = 0.07, and hence the condition 

Table 4. B = 0.03. Values of A for k = 0.3 (in the interior of the 1st band) obtained in 
successive orders of approximation from (49) with the use of the modification (58). The 
value calculated numerically by Floyd (1976) is quoted for comparison. 

Order of Values of A obtained from (49) 
approximation Vm,(z)=(1-1/A)-.'V(z) 

0.0900 
0.089 505 505 
0.089 540 
0.0910 

Numerically calculated 
value (Floyd 1976): 0.089 505 558 48 
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I Vmod/EI << 1 is fulfilled for all values of z .  Thus the modification (58) is expected to be 
useful. In table 4 we give values of A obtained from (49) in successive orders of 
phase-integral approximations for the value k = 0.3 in the interior of the first band. We 
should note that, when specialised to the first-order approximation, and with the 
notation Vmod(Z) in (14) replaced by W ( z ) ,  formula (49) becomes the same as a formula 
given by Floyd (1976, equation (12)), and hence the first-order result in our table 4 is the 
same as that obtained by Floyd. The value calculated numerically by Floyd (1976) is 
also quoted for comparison. 

In table 5 the application of unmodified phase-integral approximations (cf (57)), as 
well as phase-integral approximations modified according to (58) and (59), is illustrated 
for a situation where these modifications are expected to be almost equivalent. The 
values of A for k = 5 .5  in the interior of the 6th band, pertaining to the Mathieu 
potential with B = 1, were calculated from (49) in various orders of approximation. The 
use of (58) or (59) is seen to yield essentially the same results. Furthermore, it is 
confirmed that a faster approach towards a very accurate value is achieved when those 
modifications are used than when Vmod(Z) = V ( z ) .  We remark that here A is large 
enough that (49) yields almost the same result as (40) with U neglected. 

Table 5. B = 1. Values of A for k = 5.5 (in the interior of the 6th band), obtained from (49) 
with the use of the expressions (57), (58) and (59) respectively for Vmod(Z), are given in 
various orders of the phase-integral approximations used. The value calculated numerically 
by Floyd (1976) is also quoted. 

Order of 
approxi- 

Values of A obtained from (49) 

mation V,&) = V(z) V,,d(Z)=(1-1/A)-'V(Z) V,,(z)=(l+l/A)V(z) 

1 30.2665 30.267 68 30.267 65 
3 30.267 08 30.267 101 42 30.267 101 40 
5 30.267 1009 30.267 101 540 30.267 101 539 
7 309267 101 53 30.267 101 5559 30.267 101 5557 
9 30.267 101 5568 30.267 101 558 00 30.267 101 557 99 

11 30.267 101 558 21 30.267 101 558 315 30.267 101 558 313 
13 30.267 101 558 35 30.267 101 558 365 30,267 101 558 364 

Numerically calculated value (Floyd 1976): 30.267 101 56 
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